The World with Zero Postulation: Unraveling the Mysteries of Nature…

The_World_with_Zero__Cover_facebookFrom the book…

‘…The law of universal gravitation states that any two bodies in the universe attract each other with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. This was the genius of Newton in seeing the same underlying force that causes all bodies in the universe, big or small, to attract each other. Using his new theory, he was able to predict with considerable accuracy the motion of planets, as well as the tiniest objects known to man in those days.

He himself was not fully comfortable, however, with the force of gravity. In a letter, he wrote ‘That one body may act upon another at a distance through a vacuum without the mediation of anything else, by and through which their action and force may be conveyed from one another, is to me so great an absurdity that, I believe, no man who has in philosophic matters a competent faculty of thinking could ever fall into it.’ He was never able to assign a cause behind the existence of gravity. In the second edition of the Principia he wrote ‘I have not yet been able to discover the cause of these properties of gravity from phenomena and I feign no hypotheses… It is enough that gravity does really exist and acts according to the laws I have explained, and that it abundantly serves to account for all the motions of celestial bodies.’

It is however to be noted that the idea of gravity was not an entirely new concept outside Europe. In Siddhantha Siromani (Supreme Results) gravity was described by the 11th century Indian Mathematician Bhaskaracharya in the following terms:

Aakrishti sakthischa mahee thayaa yathkhastham guru swa abhimukham swa sakthyaa . aakrushyathe thath pathathi iti bhaathi same samanthaath kwa pathathi ayam khe

It says that the earth attracts the objects in the sky by its own force towards itself. He discusses the forces between the celestial bodies using a question: Where can the celestial bodies fall since they attract each other?

It was much after the death of Isaac Newton that modern science began to learn about electricity and magnetism in details. Around the beginning of the nineteenth century a vague relationship between electricity and magnetism began to be understood, especially due to the experiments conducted by Hans Christian Ørsted, André-Marie Ampère, Jean-Baptiste Biot, Johann Carl Friedrich Gauss, Félix Savart, Michael Faraday, etc. However, the knowledge that was being gathered was vastly chaotic. James Clerk Maxwell (1831–1879) organized the knowledge by formulating a few general principles combining, both electricity and magnetism. His work was about finding the underlying principles that causes the various electrical and magnetic phenomena. Maxwell helped develop the Maxwell–Boltzmann distribution, which is a statistical means of describing aspects of the kinetic theory of gases…’


SnowflakesWilsonBentleyEmergence is the way complex systems and patterns arise out of a multiplicity of relatively simple interactions. This is central to the study of complex as well as chaotic systems. The simple components of the environment may form more complex emergent properties, as a whole. Relating to the closest we can get, the human perception of the world, we can say that what we perceive about the world is way greater than the signals that are fed to our bodies through our senses. When you look at a distant star, your perception of the star is way greater than the light that reaches your eyes from it.

The above image: Snowflakes (by Wilson Bentley) forming complex symmetrical patterns is an example of emergence in a physical system.


Read On…


New Books on Zero Postulation!

Kindle-Cover-abstraction-book2.0Abstraction in Theory:Zero Postulation Results: Theory of Everything

From the Back Cover: This book is a way forward towards the “theory of everything” in physics.True to this gigantic task,the author approaches the subject in a completely new way.The whole theory is based on the concept of “zero-postulation”,an area where others have been less than successful. The idea of “zero-postulation” in itself is a tremendous leap in the methods applied in studying sciences.Based on no assumption,this approach is totally based on solid grounds,unlike the other theories in existence.It is a neat and satisfactory description of the world. ‘Over some years now, a large part of the energies of the scientific community has been employed solely for finding a theory that will fit in all known happenings of the physical world. Various groups of scientists have tried to attack the problem from different ends. Some of these theories have been partly successful in explaining the known physical world. However none of these theories have been without shortcomings. Be it the much lauded String Theory or the Quantum Gravity postulation or any other such attempts towards arriving at a Theory of Everything, none have been proved to be foolproof. To say the least, nobody can deny that there is room for much improvement before we can even start thinking truly towards such a theory that would describe the known world satisfactorily and provide for a single basis of understanding the four forces in nature.’

The_World_with_Zero__Cover_for_KindleThe World with Zero Postulation: Unraveling the Mysteries of Nature…

From the Back Cover: ‘A World with Zero Postulation’ is a landmark book that tells the story of the development of our understanding of the universe in as simple terms as it can be said in. Embark on an incredible journey through time, as human understanding of science journeys from the ancient age, through the medieval age, to the age. It tells, in simple language, the very recent developments in the world of science in general and of physics in particular. ‘It becomes increasingly difficult for us to predict emergent phenomena, as there is an increase in the number of properties that we have to consider for doing that. However, it should also be kept in mind than merely a large number of insignificant components, coming together and constituting a given system, is not enough to ensure that we have emergent properties. The noise that is produced may sometimes subdue the emergent properties too. ‘

Abstraction In Theory – Laws Of Physical Transaction is Currently no. 18 on the Best Seller List!

Screenshot from 2014-03-10 07:52:38The bestselling book Abstraction In Theory – Laws Of Physical Transaction has a current rank of 18 on the best seller list for cosmology…

Click Here to Add to Cart and Start Reading!

Essentials Of The Theory Of Abstraction – Lecture (Full Version)

Over some years now, a large part of the energies of the scientific community has been employed solely for finding a theory that will fit in all known happenings of the physical world. Various groups of scientists have tried to attack the problem from different ends. Some of these theories have been partly successful in explaining the known physical world. However none of these theories have been without shortcomings. Be it the much lauded String Theory or the Quantum Gravity postulation or any other such attempts towards arriving at a Theory of Everything, none have been proved to be foolproof. To say the least, nobody can deny that there is room for much improvement before we can even start thinking truly towards such a theory that would describe the known world satisfactorily and provide for a single basis of understanding the four forces in nature.

On top of that, we have the newly emerging problems of ‘Dark Energy’, ‘Dark Matter’ and the like. These realms are yet to be accepted by the scientific community officially, but nonetheless, they are most definitely at least a few parts of mysteries that remain unexplained. A good and effective Theory of Everything must aim towards explaining such mysteries too. Sadly, we have no theory as yet that fulfills these criteria.

From the dawn of civilization, human beings have tried to find out order in the chaotic world surrounding them. It has however never been easy to find a solution to explain a given system while being a part of that system. The best bet is to find out the most fundamental components within the system and building a theory round these. In other words, a theory that is able to describe the world in totality has to keep the number of basic postulates it depends upon to zero or near zero. Deductionism hits a dead end in this regard. On the other hand, abstraction as the starting point of building up a theory may be seen to be of fitting use. It would be much more than a new way of tackling the problem. Even abstract postulates do away with the shackles that bind our theories into the system and bar them from being total descriptions of the system. The abstraction we are talking about here may be defined as, “Postulation of non-postulation” or, in other words, “A system of postulation that gives equal weights to all possible solutions inside the system and favours none of such solutions over others.”

Abstraction automatically gives rise to optimized solutions within the universal set of all possible solutions, as has been shown in this book. It is these optimized solutions that make up and drive the non-abstract parts of the world, while the non-optimized solutions remain ‘hidden’ from the material world, inside the abstract world.

Starting from a basis of no postulation, we build our theory. As we go on piling up possibilities, we come to a similar basis for understanding the four non-contact forces of nature known till date. The difference in ranges of these forces is explained from this basis in this book. Zero postulation or abstraction as the basis of theory synthesis allows us to explore even imaginary and chaotic non-favoured solutions as possibilities. With no postulation as the fundamental basis, we are thus able to pile up postulated results or favoured results, but not the other way round. We keep describing such implications of abstraction in this book. We deal with the abstraction of observable parameters involved in a given system (quantum, relativistic, chaotic, non-chaotic)and formulate a similar basis of understanding them.

Scaling of observable parameters in adequate ways is shown to unite the understanding of worlds of the great vastness of the universe and the minuteness of the sub-atomic realm. Finally, the mysteries involving ‘dark energy’ and ‘dark matter’ are uncovered using such an approach.

Zero-postulation, as we can see, sits at the heart of abstraction. Null-postulation or zero-postulation favours no given result or a given set of results over all others. In that way, null postulation does not assume anything beforehand. What it does is to consider all possible results and derive the ultimate results from this exhaustive set of possible results. Each valid element inside the exhaustive set of results might interact in order to culminate into the ‘real’ results or happenings.

In not favouring solutions or sets of solutions, the principle of zero-postulation drives away any unwanted incompleteness from the description of the world. It is the interactions between the possible exhaustive set of solutions that creates the impression pointedness or directiveness in the universe, leading to the formation of clusters, as discussed earlier. These interactions may be chaotic in nature, giving rise to attractor points where the directiveness inside any given system asymptotically seem to approach. It is this directiveness, in turn, inside a given system or in the universe as a whole, that is the cause of all known phenomena. This directiveness of possibilities saves the universe from being exactly the same throughout, but makes it heterogeneously active, as we see it to be.

As zero-postulation considers the exhaustive set of all possible results, it would yield to be perfectly flexible to work with. That is to say, the scaling-ratio of observations may be adjusted as per requirements an intentions of the observer. This in turn is seen to unite observables at both microscopic and macroscopic levels through a similar basis of understanding. Even the ‘non-real’ abstract points themselves in the exhaustive set may be seen to interact and give rise to ‘real’ possibilities. Through analysis of all such possibilities, combined with analysis of all real elements inside the set is the description of the world in totality. The principle of null-postulation holds the key to such total description of the world, or of any given system, for that matter. Choosing suitable scaling-ratio and identifying all real and abstract parameters within a given system enables us to describe the system in all totality. Different scales of observations may have different sets of parameters with still different sets of interactions between themselves. These various levels of interactions between the parameters may give rise to different force-fields with their own respective sets of accelerations of interactions. However, all such fields of interactions, being fundamentally similar, has a similar basis of description.

In the description of the universe or any given system, there is always some ‘hidden’ information, that do not show up while the rest of the available information is being taken into account. Different sets of such available information at various levels of scaling will have their respective sets of such hidden information. This may prevent a given description of the world, or a part of it, at a given scale, from being completely deterministic. Lack of complete determinism in directiveness inside a given system, or in the universe as a whole, gives rise to hidden mass and hidden energy, that may not seem to show up in a given set of observations, but is seen to affect the overall description, nonetheless. This ‘indeterminism’ in directiveness will make the clusters to move away from each other and the clusters themselves to be bound within themselves with greater hidden strengths than is anticipated. The hidden mass exerts a hidden gravity inside the cluster concerned. The hidden energy, on the other hand, will tend to draw the clusters away from each other.

For a large enough or a small enough scale of observations, this hidden amount of information concerned seems to be of paramount significance. The galaxies themselves are seen to be held together by some hidden masses, while they are found to move away from each other by some hidden amount of energy. On the other hand, in the subatomic world, particles are seen to be held together by very strong hidden forces, while they seem to be interacting with each other with some hidden amount of energies.

In both the cases, a certain amount of hidden uncertainty in available information is always found to be present. At a scale of observations, which is more ‘akin’ to our own ‘normal’ day-to-day scale of looking at  the world, which lies in between such vastness or such minuteness, the hidden amount of information seems to be of less significance. As the scaling-ratio and the object it is supposed to measure become increasingly commensurate to each other, the amount of hidden information for that given scale of measurements diminishes in size.

Looking at a large enough part of the universe, we may draw an analogy to a system of scattered particles, in motion or rest, relative to each other. These particles may or may not be similar to each other, if we look at a given locality. Our idea, however, is that we can always represent even the whole of the universe on a piece of paper of our desired size. We can very well do the same with localities of sub-atomic sizes.

We may represent both the worlds, viz., the microscopic and the macroscopic, within any desired standard size. Theoretically, we are only to diminish the snaps of the universe and magnify the snaps of the microscopic world in order to put both into representations of a definite scaling-size. Looking at such a representation of the macroscopic world (due to the large number of constituents and the large distances separating them involved) we will find it to be a complex mixture of various kinds of particles. On the other hand, looking at such a representation of the microscopic world, (due to the small distances separating the constituents) it will be like the actual universe itself, with various types of constituent parts involved. Such a representation of the microscopic and the macroscopic worlds will bring out hidden properties and behaviours of both worlds, as well as providing for a similar basis of studying them both.

From the Theory of Abstraction, we arrive at ‘hidden’ direction part of an energy-quantum. Quantum dynamics is seen to merge with classical dynamics if this hidden direction-part of the quantum-states are taken into consideration, as validated by practical analysis and data. Moreover, this hidden part of an actual energy-quantum may explain the dark-energy problem. As a support towards transport comprises the direction-part only, and as the resistance against motion is offered against the whole of an energy-quantum (direction-part + magnitude-part), this hidden energy may very well affect a gravitational field.

The relative periodicity of trajectories describing a given transaction seems to visit a given center of possibilities or a given set of centers of possibilities. In the chaotic region, at least, any given event seems to have a periodic set of possibilities of happening. This implies the revisit of trajectories around one or a given set of attractor points. However, trajectories seem to stray from such points and not be approaching them exactly, for any given set of measurements. Adjusting respective scaling-ratios and choosing suitable parameters to a desired level of accuracy of predictions may ensure effective descriptions of a given system, a given set of systems, or the world as a whole.

Any change in scaling-ratio such that the constituents inside the system concerned have a large enough ‘packing density’, will yield the system, as a whole, to be in a ‘condensed’ state of being, at that given scaling-ratio. Again, a suitable change in the scaling-ratio so as to break away from the condensation state yields a different set of observed results, complete with its own subset of hidden results and hidden information regions. This may explain how a whole world of its own set of possibilities can just come into being from such a condensed state of existence as the scaling-ratio is suitably adjusted. At such a scaling-ratio, this world is expected to have its own set of heterogeneity, which seems to be just the opposite of the practically homogeneous level of existence as in the condensed state. Coming into existence of such a world, as well as, any non-existence of such a world may be attributed to changing scaling-ratios. Only a suitable change in the landscaping and scaling-ratio is sufficient in describing any such existence or non-existence, as a whole. This, in turn, may be taken as the explanation of how the whole universe can begin from a homogeneous ‘nothing’ at the time of the ‘Big Bang’.

Download Your FREE Copy Now…

More than 1000 copies downloaded in  one night.. Way to go guys.. Download your FREE copy if you have not downloaded already..